Netflix OSS套件一站式学习驿站

生命太短暂,不要去做一些根本没有人想要的东西。本文已被 https://www.yourbatman.cn 收录,里面一并有Spring技术栈、MyBatis、JVM、中间件等小而美的专栏供以免费学习。关注公众号【BAT的乌托邦】逐个击破,深入掌握,拒绝浅尝辄止。

在这里插入图片描述
Netflix OSS是由Netflix公司主导开发的一套代码框架/库,目的是用于解决大规模集群的分布式系统的一连串问题,如:服务发现、负载均衡、熔断降级、限流、网关等。对于当代的Java开发者来说,Netflix OSS似乎已经成为了云端开发/微服务开发解决方案的代名词。有些小伙伴把Spring Cloud和Netflix画了等号,这虽然是不对的,但足矣见得Netflix OSS它在微服务解决方案中的地位

时至今日的2020年,虽说旗下众多工程大都已经进入到停更维护状态,但由于它悠久的历史积淀、庞大的用户群体,更为重要的是其优秀的设计思维,使得它现在仍旧占据着主流地位,所以仍旧具有非常大的学习价值和研究意义。Netflix OSS作为“鼻祖”(对于Spring Cloud来说是鼻祖),对其它新生技术提供“指导”作用,因此不会过时,毕竟万变不离其宗。

本文作为目录导航,当有新内容增加时,目录会同步更新。建议收藏本文
本文作为目录导航,当有新内容增加时,目录会同步更新。建议收藏本文
本文作为目录导航,当有新内容增加时,目录会同步更新。建议收藏本文


↓↓↓↓↓↓↓↓关于以下专栏内容的说明↓↓↓↓↓↓↓↓
  • 由于Netflix OSS运用在云服务解决方案中的组件众多,为了方便你不挪地一站式学习,本文把它归拢起来让你从此不迷路
  • 每个组件专门开设一个专栏,方便你进行针对性学习,逐个击破
  • 不同层级的程序员之间有个Gap:代码示例 + 实操。因此在文章各个知识点里绝大多数均附有代码示例,能让你在掌握理论基础之上,通过案例加深理解
  • 每个专栏的文章,均是有些付费,有些免费,各位完全自愿选择阅读,不喜勿喷
  • 关于付费购买:有且仅需要购买任何一个专栏(Tips:官方规定所有专栏定价一样),其它所有专栏(没错,是所有)均对你免费开放
    • 话外音:购买一次,可看所有
    • 此规则仅适用于CSDN平台购买,其它平台暂不适用。去CSDN平台:直达电梯
  • 关于内容更新:没有标注完结字样的专栏均表示还在连载中…,请持续保持关注
  • 关于价格调整:价格并非恒定,但为保护已购买用户的权益,价格只上浮不下跌。所以早购买,早学习,早涨薪
    • 说明:因为内容一直在增加,价格向上浮动才是合理的嘛
  • 关于咨询交流:由于阅读过程中你可能会有些疑问需要咨询/交流,可加我微信:fsx641385712 私聊or邀请你入群交流

代码下载地址:https://github.com/f641385712/netflix-learning , https://github.com/f641385712/feign-learning


享学Archaius(完结)

本专栏介绍和访问地址:https://blog.csdn.net/f641385712/category_9911741.html


享学Hystrix

本专栏介绍和访问地址:https://blog.csdn.net/f641385712/category_9921991.html


享学Ribbon

本专栏介绍和访问地址:https://blog.csdn.net/f641385712/category_9922216.html


享学Eureka

本专栏介绍和访问地址:https://blog.csdn.net/f641385712/category_9831549.html


享学Feign

本专栏介绍和访问地址:https://blog.csdn.net/f641385712/category_9708549.html


享学Zuul

待同步…


享学Conductor

待同步…


附录:

享学Jackson(完结)

本专栏介绍和访问地址:https://blog.csdn.net/f641385712/category_9625300.html


关注A哥

AuthorA哥(YourBatman)
个人站点www.yourbatman.cn
E-mailyourbatman@qq.com
微 信fsx641385712
活跃平台
公众号BAT的乌托邦(ID:BAT-utopia)
知识星球BAT的乌托邦
每日文章推荐每日文章推荐

BAT的乌托邦

在这里插入图片描述

YourBatman CSDN认证博客专家 博客专家 专栏创作者 BAT的乌托邦
也许当我老了,也一样写代码。不为别的,只为爱好
公众号:BAT的乌托邦
亦可在这里和我交流:https://www.yourbatman.cn
著名的Netflix 智能推荐 百万美金大奖赛使用是数据集. 因为竞赛关闭, Netflix官网上已无法下载. Netflix provided a training data set of 100,480,507 ratings that 480,189 users gave to 17,770 movies. Each training rating is a quadruplet of the form <user, movie, date of grade, grade>. The user and movie fields are integer IDs, while grades are from 1 to 5 (integral) stars.[3] The qualifying data set contains over 2,817,131 triplets of the form <user, movie, date of grade>, with grades known only to the jury. A participating team's algorithm must predict grades on the entire qualifying set, but they are only informed of the score for half of the data, the quiz set of 1,408,342 ratings. The other half is the test set of 1,408,789, and performance on this is used by the jury to determine potential prize winners. Only the judges know which ratings are in the quiz set, and which are in the test set—this arrangement is intended to make it difficult to hill climb on the test set. Submitted predictions are scored against the true grades in terms of root mean squared error (RMSE), and the goal is to reduce this error as much as possible. Note that while the actual grades are integers in the range 1 to 5, submitted predictions need not be. Netflix also identified a probe subset of 1,408,395 ratings within the training data set. The probe, quiz, and test data sets were chosen to have similar statistical properties. In summary, the data used in the Netflix Prize looks as follows: Training set (99,072,112 ratings not including the probe set, 100,480,507 including the probe set) Probe set (1,408,395 ratings) Qualifying set (2,817,131 ratings) consisting of: Test set (1,408,789 ratings), used to determine winners Quiz set (1,408,342 ratings), used to calculate leaderboard scores For each movie, title and year of release are provided in a separate dataset. No information at all is provided about users. In order to protect the privacy of customers, "some of the rating data for some customers in the training and qualifying sets have been deliberately perturbed in one or more of the following ways: deleting ratings; inserting alternative ratings and dates; and modifying rating dates".[2] The training set is such that the average user rated over 200 movies, and the average movie was rated by over 5000 users. But there is wide variance in the data—some movies in the training set have as few as 3 ratings,[4] while one user rated over 17,000 movies.[5] There was some controversy as to the choice of RMSE as the defining metric. Would a reduction of the RMSE by 10% really benefit the users? It has been claimed that even as small an improvement as 1% RMSE results in a significant difference in the ranking of the "top-10" most recommended movies for a user.[6]
相关推荐
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 19.89元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值